If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+14x+7=0
a = 4; b = 14; c = +7;
Δ = b2-4ac
Δ = 142-4·4·7
Δ = 84
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{84}=\sqrt{4*21}=\sqrt{4}*\sqrt{21}=2\sqrt{21}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-2\sqrt{21}}{2*4}=\frac{-14-2\sqrt{21}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+2\sqrt{21}}{2*4}=\frac{-14+2\sqrt{21}}{8} $
| (5x^2)*(29^7x)+524300=8 | | (5x^2)*(29^7)*x+524300=8 | | (5x^2)*(29^7)*x+524308=0 | | 12-(8^6(2-4))=-5x^2*29^(7x)-8 | | 1^2=x | | (1)=x | | 2^(5x+2)(8^2x)=16^(3x) | | 0.3x+4x=0.6x | | 0.2x=0.25x+2 | | 2x+29=6x-9 | | F(5)=3x+9/2x^2 | | 2x+3=11x+24 | | F(5)=3x+9/2x^ | | x/4+22=19 | | (2x-30)+(3x-40)=180 | | 4h+11=5h-8 | | 54+2w=11w | | 122.93=0.13x+x | | Y=0.13x+x | | p/4-20=-31 | | -8t=-4.8 | | 169x-1=0 | | -6+9y=-87 | | -6+9y=87 | | 7(2y+5)=0 | | Q=-80p+15000 | | I4x+1I=I3x-7I | | 4.2b=25.2 | | a-8=36 | | f(1)=-26 | | 4y(2y-4)=16y+4y^2 | | 12(3-x)=5(x-3) |